Home >> Interactive Library - Algebra >> Indices, powers #5
Worked Solution #5 of 5, increasing in difficulty.
Expand the following:
\begin{align} \quad\quad\quad\quad\quad\quad\quad\quad\Large \left ( \frac{ 3 \ x^{3} \ y^{-6} \ z^{-2}}{ 5 \ a^{-1} \ b^{-4} \ c^{7} } \right )^{3} \\ \\ &\cssId{Step1}{\Large = { \left ( \frac{ 3^{3} }{ 5^{3} } \right ) \left ( \frac{\ x^{3} \ y^{-6} \ z^{-2}}{a^{-1} \ b^{-4} \ c^{7} } \right )^{3} }} \\ \\ &\cssId{Step2}{\Large = { \left ( \frac{ 27 }{ 125 } \right ) \left ( \frac{\ x^{3} \ y^{-6} \ z^{-2}}{a^{-1} \ b^{-4} \ c^{7} } \right )^{3} }} \\ \\ &\cssId{Step3}{\Large = { \frac{ 27 }{ 125 } \ \left ( \frac{\ x^{9} \ y^{-18} \ z^{-6}}{a^{-3} \ b^{-12} \ c^{21} } \right ) }} \\ \\ &\cssId{Step4}{\Large = { \frac{27 \ x^{9} \ y^{-18} \ z^{-6}}{125 \ a^{-3} \ b^{-12} \ c^{21} } }} \\ \\ \end{align}
[ About ] [ FAQ ] [ Links ] [ Terms & Conditions ] [ Privacy ] [ Site Map ] [ Contact ]