Conventionally sequences have a first term or starting value, usually denoted by the letter 'a'.

The common difference 'd' is the difference between consecutive terms when the terms increase by a regular amount.

The difference change ' \mathbf{c} ' is the change between consecutive differences

The last term in a sequence of ' \mathbf{n} ' numbers is the $\mathbf{n t h}$ term.
The general term is an expression in ' n ' that can be used to calculate any term in the sequence.

'Common Difference' Sequences

The general term for term number ' \mathbf{n} ', common diff. ' \mathbf{d} ' and first term ' \mathbf{a} ' is:

$$
d n+(a-d)
$$

$$
a=4, d=5
$$

the nth term is $\mathbf{d n}+(\mathbf{a}-\mathbf{d})=5 n+(4-5)=5 n-1$
$\mathrm{n}=7,7$ th term is $(5 \times 7)-1=34$
example \#1 - Find the nth term in this sequence : 13, 20, 27, 34, 41, $48 \ldots$

```
a=13,d= 7
nth term = dn + (a-d) = 7n + (13-7) = 7n +6
```

example \#2 - Find the nth term in this sequence : $11,19,27,35,43,51 \ldots$
$a=11, d=8$
nth term $=d n+(a-d)=8 n+(11-8)=\underline{8 n+3}$
example \#3 - Find the nth term in this sequence : 9, 15, 21, 27, 33, $39 \ldots$

```
a=9,d=6
nth term = dn + (a-d) = 6n + (9-6) = 6n +3
```


'Changing Difference' Sequences

The general term for term number ' \mathbf{n} ', common diff. 'd', first term 'a' and difference change 'c'is:

$$
a+d(n-1)+\frac{c}{2}(n-1)(n-2)
$$

Example \#1 - find the nth term of 3, 8, 14, 21, 29 \qquad

Writing the series with increases below:

3		8		14		21		29
5		6		7		8		

remembering that the nth term is given by:

$$
\begin{aligned}
& \begin{aligned}
& a+d(n-1)+\frac{c}{2}(n-1)(n-2) \\
& \text { 1st term, 'a' }=3
\end{aligned} \\
& \text { first difference 'd' }=5 \\
& \text { difference increase 'c' }=1 \\
& \begin{aligned}
\text { nth term } & =3+5(n-1)+\frac{1}{2}(n-1)(n-2) \\
& =3+5 n-5+\frac{1}{2}(n-1)(n-2) \\
& =3+5 n-5+\frac{1}{2}\left(n^{2}-3 n+2\right) \\
& =5 n-2+\frac{n^{2}}{2}-\frac{3 n}{2}+\frac{2}{2} \\
& =\frac{7 n}{2}-2+\frac{n^{2}}{2}+1 \\
& =\frac{n^{2}}{2}+\frac{7 n}{2}-1
\end{aligned}
\end{aligned}
$$

Example \#2 - find the nth term of 5, 7, 10, 14, 19 \qquad

Writing the series with increases below:

| 5 | | 7 | | 10 | | 14 | | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

remembering that the nth term is given by:

$$
a+d(n-1)+\frac{c}{2}(n-1)(n-2)
$$

1st term, 'a' =5
first difference 'd' = 2
difference increase ' c ' = 1

$$
\begin{aligned}
\text { nth term } & =5+2(n-1)+\frac{1}{2}(n-1)(n-2) \\
& =5+2 n-2+\frac{1}{2}(n-1)(n-2) \\
& =5+2 n-2+\frac{1}{2}\left(n^{2}-3 n+2\right) \\
& =5+2 n-2+\frac{n^{2}}{2}-\frac{3 n}{2}+\frac{2}{2} \\
& =4+\frac{n}{2}+\frac{n^{2}}{2} \\
& =\frac{n^{2}}{2}+\frac{n}{2}+4
\end{aligned}
$$

