Symbols

$$
\begin{array}{ll}
x>y & x \text { greater than } y \\
x<y & x \text { less than } y \\
x \geq y & x \text { greater than or equal to } y \\
x \leq y & x \text { less than or equal to } y
\end{array}
$$

The rules of inequalities

These are the same as for equations i.e that whatever you do to one side of the equation(add/subtract, multiply/divide by quantities) you must do to the other.

However, their are two exceptions to these rules.

When you multiply each side by a negative quantity
'<' becomes '>', or '>' becomes '<'.

That is, the inequality sign is reversed.

Similarly, when you divide each side by a negative quantity
< becomes >, or > becomes<.

That is, the inequality sign is reversed.

Examples

$$
-\frac{x}{2}<6
$$

multiplying each side by -2
$\left.\frac{-2}{-2} x\right\rangle-12$ (note \langle to \rangle)
$x>-12$
$-5 x>4$
dividing each side by -5
$\frac{-5}{-5} x<\frac{4}{-5} \quad$ (note $>$ to $<$)
$x<\frac{4}{-5}$
$x<-\frac{4}{5}$

Inequalities with one variable

Example \#1 - Find all the integral values of x where,

$$
6 \geq x>-5
$$

The values of x lie equal to and less than 6 but greater than -5 , but not equal to it.

The integral(whole numbers + or - or zero) values of x are therefore:

$6,5,4,3,2,1,0,-1,-2,-3,-4$

Example \#2 - What is the range of values of x where,

$$
x^{2} \geq 144
$$

Since the square root of 144 is +12 or -12 (remember two negatives multiplied make a positive), x can have values between 12 and -12.

In other words the value of x is less than or equal to 12 and more than or equal to -12. This is written:
$\underline{12 \geq x \geq-12}$

Inequalities with two variables - Solution is by arranging the equation into the form

$$
A x+B y=C
$$

Then, above the line of the equation, $\mathbf{A x}+\mathbf{B y}<\mathbf{C}$
and below the line, $\mathbf{A x}+\mathbf{B y}>\mathbf{C}$
Consider the graph of $-2 x+y=-2$
note - the first term A must be made positive by multiplying the whole equation by - 1

The equation $-\mathbf{2 x}+\mathbf{y}=\mathbf{- 2}$ becomes $2 \mathbf{x}-\mathbf{y}=\mathbf{2}$

look at the points(red) and the value of $\mathbf{2 x} \mathbf{- \mathbf { y }}$ for each. The table below summarises the result.

point(x, y)	2x-y	value	more than 2 ?	above/ below curve
$(1,1)$	2(1)-(1)	1	no-less	above
$(1,4)$	2(1)-(4)	-2	no - less	above
$(2,3)$	2(2)-(3)	1	no - less	above
$(3,3)$	2(3)-(3)	3	yes - more	below
$(2,1)$	2(2)-(1)	3	yes - more	below
$(4,2)$	2(4)-(2)	6	yes - more	below

