Introduction

Frequency is used to describe the number of times results occur. On the other hand, cumulative frequency is a 'running total'. It is the sum of frequencies moving through the data.

Example - A survey was done to look at how many TV's there were in a household.

no. of TV's	frequency		cumulative frequency
0	4	4	4
1	15	$4+15$	19
2	18	$4+15+18$	37
3	7	$4+15+18+7$	44
4	2	$4+15+18+7+2$	46

The definition of the median is that particular value half way through the data.

If the cumulative total of frequencies is 46 , then the median is the 23 rd. value.

So the median is 1 (nearest whole number).

Where there are lots of values, say more than 10 , the data is best presented as 'grouped data'.

Quartiles

The upper quartile is the particular value $3 / 4$ through the cumulative frequency.

The lower quartile is the particular value $1 / 4$ through the cumulative frequency.
In the example given above:
upper quartile $=0.75 \times 46=34.5$ (rounded to 36) - this gives a value close to 2
lower quartile $=0.25 \times 46=11.5$ (rounded to 12) - this gives a value close to zero
note: values are the readings along the bottom of a cumulative frequency graph

Ranges

The interquartile range is the difference between the lower and upper quartiles.
interquartile range $=34.5-11.5=23$

The interquartile range is a measure of how spread out data is. With reference to products(eg the shelf-life of foods) a small value for the interquartile range means a more accurate result.

Box \& Whisker Plot (Box Plot)

The plot is derived from a cumulative frequency graph and shows the range of data, the interquartile range, and where the quartiles are in relation to the median.

