The perpendicular bisector of a line(also line equidistant from two points)

- set the radius of your compass to more than than half the length of XY (but less than XY)
- with centre X, draw an arc above and below the line $X Y$
- with centre Y, draw an arc above and below the line XY intersecting the arcs from X
- the arcs intersect at points W and Z respectively above and below the line XY
- join the points W and Z
- the line WZ is the perpendicular bisector of $X Y$

Perpendicular from a point to a line

- set the radius of your compass so that an arc with centre P cuts the line at two points
- name these points of intersection X and Y
- with the radius greater than half $X Y$ and centre X draw an arc below the line $X Y$
- repeat with centre Y
- where the arcs intersect call point Z
- the line joining Z to P is the perpendicular bisector of the line $X Y$
- where this line meets XY call point W
- $\quad \mathrm{PW}$ is the perpendicular from the point P to the line $X Y$

Bisection of an angle

- with centre O draw arcs to cut the arms of the angle at X and Y
- using the same radius, from point X draw an arc between the arms of the angle
- repeat at point Y
- the two arcs intersect at point P
- draw a line between P and O
- PO is the bisector of the angle XOY

Construction of a 60 deg. angle (also of an equilateral triangle)

- draw a line XY
- with centre X and radius the length of the line, draw an arc above the line
- repeat from centre Y
- the point Z is where the arcs intersect
- join $X Z$
- join $Y Z$
- angle $Z X Y$ is a 60 deg. angle

Construction of a triangle(sides different)

- draw a line XY of given length, as the base to the triangle
- with centre X and radius the length of the second side of the triangle, draw an arc above the line
- with centre Y and radius the length of the third side of the triangle, draw an arc above the line
- the point Z is where the arcs intersect
- join XZ
- join $Y Z$

