Multiplying Out(expanding) - a pair of brackets with a single term infront

The term outside the brackets multiplies each of the terms in turn inside the brackets.
example:

$$
\begin{aligned}
& x(a+b+c) \\
= & x a+x b+x c
\end{aligned}
$$

further examples:

$$
\begin{array}{lll}
& 3 p(2 x-5 y) & 2 x y(p+2 q) \\
= & 6 p x-15 p y & 2 x p+4 x p q \\
-2 x\left(3 p^{2}-2 q^{2}\right) & 3 x^{2}\left(y+4 z^{2}\right) \\
=-6 x p^{2}+4 x q^{2} & =15 q^{2} y+12 x^{3} z^{2}-6 q^{3} p^{2} & \\
\hline
\end{array}
$$

Multiplying Out(expanding) - two pairs of brackets

Think of the two terms in the first bracket as separate single terms infront of a pair of brackets.
example:

$$
(3 a-2 b)(a+b)
$$

Multiply the contents of the 2 nd bracket by the 1st term in the 1st bracket.

$$
\begin{aligned}
&(3 a-2 b)(a+b) \\
& 3 a(a+b) \\
&= 3 a^{2}+3 a b
\end{aligned}
$$

Multiply the contents of the 2 nd bracket by the $\mathbf{2 n d}$ term in the 1st bracket.

$$
\begin{aligned}
& (3 a-2 b)(a+b) \\
& -2 b(a+b) \\
= & -2 a b-2 b^{2}
\end{aligned}
$$

Add the two results together.

$$
\begin{aligned}
& 3 a^{2}+3 a b \\
& \frac{-2 a b-2 b^{2}}{3 a^{2}+a b-2 b^{2}}
\end{aligned}
$$

Example \#1

$$
\begin{aligned}
& (7 x-5)(2 x-3) \\
& 14 x^{2}-21 x \\
& \frac{-10 x+15}{14 x^{2}-31 x+15}
\end{aligned}
$$

Example \#2

$$
\begin{aligned}
& (2 x-2)(5 x+3) \\
& 10 x^{2}+6 x \\
& \frac{-10 x-6}{10 x^{2}-4 x-6}
\end{aligned}
$$

Example \#3

$$
\begin{aligned}
& (2 x+9)(3 x-11) \\
& 6 x^{2}-22 x \\
& \quad+27 x-99 \\
& 6 x^{2}+5 x-99
\end{aligned}
$$

Squared Brackets

$$
\begin{aligned}
(x+y)^{2}= & (x+y)(x+y) \\
= & x^{2}+x y \\
& \frac{+x y+y^{2}}{x^{2}+2 x y+y^{2}}
\end{aligned}
$$

note: a common mistake

$$
(x+y)^{2} \neq x^{2}+y^{2}
$$

Difference of Two Squares

Brackets - Simple Factorising - This involves taking out a common term from each expression and placing it infront of the brackets.
examples:

$$
\begin{array}{ll}
3 x^{2}-9 x & 4 x^{3}-6 x^{2} \\
3 x(x-3) & \underline{2 x^{2}(2 x-3)} \\
5 x^{2} y-10 x y^{2} & 8 x-12 x y \\
5 x y(x-2 y) & \underline{4 x(2-3 y)} \\
\hline 3 x y^{3}-15 x^{2} y & 7 \mathrm{x}^{2} y^{2}-21 x y \\
\underline{3 x y\left(y^{2}-5 x\right)} & \underline{7 x y(x y-3)} \\
\hline
\end{array}
$$

Factorising Quadratic Expressions

This is best illustrated with an example:

$$
x^{2}-7 x+12
$$

You must first ask yourself which two factors when multiplied will give $\mathbf{1 2}$?

The factors of 12 are : \qquad 1×12 2×6, \qquad 3×4

Now which numbers in a group added or subtracted will give 7 ?

1 : 12 gives 13,11 \qquad . 2 : 6 gives 8, 4 \qquad 3:4 gives 7, 1
so

$$
\begin{aligned}
& \qquad x^{2}-7 x+12=(x \pm 3)(x \pm 4) \\
& \text { which of the ' }+ \text { ' } \& \text { '-' terms makes } \mathbf{+ 1 2} \text { ? } \ldots \ldots \text { and when added gives }-\mathbf{7} \text { ? }
\end{aligned}
$$

these are the choices: $(+3)(+4),(-3)(+4),(+3)(-4)$ or $(-3)(-4)$
clearly, (-3)(-4) are the two factors we want
therefore

$$
x^{2}-7 x+12=(x-3)(x-4)
$$

Example \#1

$$
\begin{aligned}
& x^{2}-x-20 \\
& (x \pm 5)(x \pm 4) \\
& (x-5)(x+4)
\end{aligned}
$$

Example \#2

$$
\begin{aligned}
& x^{2}+x-42 \\
& (x \pm 7)(x \pm 6) \\
& (x+7)(x-6)
\end{aligned}
$$

Example \#3

$$
\begin{aligned}
& x^{2}-13 x+30 \\
& (x \pm 10)(x+3) \\
& (x-10)(x-3)
\end{aligned}
$$

