

General Certificate of Secondary Education

Mathematics 4301 Specification A

Paper 2 Foundation

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
Mdep A method mark dependent on a previous method mark being awarded.
B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$

Paper 2F

Q	Answer	Mark	Comments
1	(£) 1.04	B1	104 penalize once for consistent wrong money notation
	(£) 1.60	B1	$160 \mathrm{p} \quad 1.6$ is B0
	(£) 2.64	B1 ft	264 p Allow $£ 2.64$ p Must cross out $£$ sign if working in p for this mark

2(a)	20	M1	$\frac{2}{10} \quad$ B1 oe \quad B0 for 2 out of 10	
2(b)	100 - their (a)	B1ft	80	

3(a)	Draw a 3-D sketch with 8 edges, 5 vertices, 5 faces Must show any hidden edges	B1	Accept plan view, accept opposite lines on the base not parallel
$\mathbf{3 (b)}$	(Triangular) prism	B1	Triangle prism
	Cuboid or rectangle prism or square prism	B1	(Rectangular) prism. If give prism, prism must qualify one of them for 2 marks If both answers are prism then total is B1 Rectangle cubiod is choice so B0

| 4(a) |
 | B1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 (b)}$ | 11 | B1 | |

5(a)	$\begin{aligned} \mathrm{A}(3,1) \mathrm{B}(4,3) & \mathrm{A}(x=3, y=1) \\ & \mathrm{B}(x=4, y=3) \end{aligned}$	B2	B1 For each SC1 For both reversed but not $(1,3)$ and $(3,4)$ $\mathrm{A}(3 x, 1 y) \quad$ gets SC 1 $\mathrm{B}(4 x, 3 y)$
5(b)	Correct plots	B2	B1 For each ignore extra plots
5(c)	Parallelogram	B1	The shape must be a parallelogram

Q	Answer	Mark	Comments
6(a)	(0). 83 or $£ .83 \mathrm{p}$	B1	83 p
6(b)	$1.21+2.31$ or digits	M1	Digits 352 seen
	3.52	A1	352 p with $£$ crossed out. $£ 325$ is A0 SC1 For $£ 2.93$ or 293 p
6(c)	3×0.64	M1	Digits 192 seen
	1.92	A1	192 p with $£$ crossed out. $£ 192$ is A0 SC1 For $£ 1.32$ or 132 p

$7(\mathbf{a)}$	6	B1	$1 \times 2 \times 3=6$ is B0
7 7(b)	$(6+3+2) \times 2$	M1	
	22	A1	

$\mathbf{8 (a)}$	Correct lines $-\backslash \mid$	B3	B1 For each
$\mathbf{8 (b)}$	Square added on bottom right	B1	

$\mathbf{9 (a)}$	$6 \times 40+25$	M1	
	265	A1	$4 \mathrm{hr} 25 \quad$ SC1 Digits 265 with no working
$\mathbf{9 (b)}$	$165=\mathrm{w} \times 40+25$	M1	
	$165-25=40 \mathrm{w}$	M1 dep	$(165-25) \div 40$
	3.5	A1	$3 \frac{1}{2}$

$\mathbf{1 0 (a)}$	400	B1	
$\mathbf{1 0 (b)}$	150	B1	
$\mathbf{1 0 (c)}$	300	B1	
$\mathbf{1 0 (d)}$	Draws 3 diagrams	B1	Allow 3 circles

$\mathbf{1 1}$	2 on left, 4 on right, 1 at bottom	B2	B1 For one or two correct

Q	Answer	Mark	Comments
12	$34+27+38+27+45+17$	M1	(188) must see at least 3 additions
	Their $188 \div 6$	M1 dep	oe $\frac{94}{3} \quad$ SC1 173.8 or 174
	31.3 or answer that rounds to 31.3	A1	$31 \frac{1}{3}$ 31 with no working is 0 total as could be median 31 with working is A0

13(a)	32.6	B1	
$\mathbf{1 3 (b) (i) ~}$	29.326	B1	
$\mathbf{1 3 (b) (i i) ~}$	29.3	B1	
$\mathbf{1 3 (b) (i i i) ~}$	30	B1	30.0 is B0

$\mathbf{1 4 (a) (i) ~}$	$6 \times 8+7 \times 11$	M1	
	125	A1	
$\mathbf{1 4 (a) (i i) ~}$	$38=$ their $(6 \mathrm{P})+7 \mathrm{Q}$	M1	$38=6 \times 4+7 \mathrm{Q}$ $38=64+7 \mathrm{Q}$$\quad$$10+7 \mathrm{Q}=38$
	2	$46+7 \mathrm{Q}=38$	

15	$75=4 \times 5 \times \mathrm{h}$	M1	$75 \div(4 \times 5)$
	3.75	A1	$3 \frac{3}{4}$

Q	Answer				Mark	Comments
16(a)	1	2	3	4	B1	
	2	4	6	8		
	3	6	9	12		
	4	8	12	16		
16(b)	$\frac{4}{16}$				B2 ft	$\frac{1}{4}, 0.25,25 \%$ oe B1ft For 4 as numerator in valid prob. B1 For 16 as denominator in valid prob. $\mathrm{SC1}$ For $\frac{8}{24} \frac{4}{16}=4$ is B0 B1 For 1 in 4,4 out of 16 B0 For 4:16, 4 to 16, 4-16

$\mathbf{1 7 (a)}$	$4205-4154$	M1	Take 49 as MR
	Their 51×104	M1 dep	Their 51×1.04
	5304	A1	Ignore $£$ if this is on answer line
	53.04	A1	
$\mathbf{1 7 (b)}$	$97 \times 62 / 100$	M1	Build up method is OK $\quad 62 \times 97 \%$ is M0
	$£ 60.14$	A1	6014 p with $£$ crossed out
	$39-34$	M1	
	Their $5 \div 34 \times 100$	M1 dep	M2 for $\left.\frac{39}{34}-1\right) \times 100$
	14.7	A1	15 with working \quad T and I must get 14.7

$\mathbf{1 8 (a)}$	500×1.87	M1	
	935	A1	
	$200 \div 1.87$	M1	
	106.95	A1	106,107

Q	Answer	Mark	Comments
$\mathbf{1 9}$	EBC $=180-110$	M1	70 seen unless clearly from wrong method
	$360-$ (their70 $+90+120$)	M1 dep	Split into 2 triangles is OK but angles in triangle BDC must add to 180
	80	A1	Answer may be on diagram but penalize 1 mark if contradicted on answer line

$\mathbf{2 0 (a)}$	150	B1	
$\mathbf{2 0 (b)}$	10	B1	
$\mathbf{2 0 (c)}$	Their $150 \div 3$	M1	
	50	A1 ft	SC1 Their $150 \div 180(=0.83)$ or Their $150 \div 170(=0.88)$

$\mathbf{2 1}$	$580 \div 51$ or $370 \div 32$	M1	Allow scaling provided both calcs. are scaled
	$11.37(\ldots)$ or $11.56(\ldots)$	A1	Accept 11.4 or $11.6,11.3$ or 11.5 or scaled digits Allow 11 and 12 with working
	Beryl and both answers above	A1	
	$580 \div 51$ or $370 \div 32$ or scaled	M1	SC3 For $51 \div 580$ and $32 \div 370$
	$11.37 \times 32(=363.8)$ or $11.56 \times 51(=589.6)$ or scaled	A1	$0.0879 \ldots 0.088$ and $0.0865 \ldots 0.086$
	Beryl and comparison $363<370$ or $589>580$	A1	Beryl because she uses less litres per km Must mention litres per km or $1 / \mathrm{km}$

22(a)	Rotation as single transformation	B1	Turn is B0
	$(0,0)$ or origin or O	B1	
	90° (anticlockwise)	B1	$\frac{1}{4}$ turn or 270 clockwise
22(b)	Correct reflection	B2	B1 For reflection in $x=-1$ B1 For $y=-1$ drawn B1 For shape A reflected in $y=-1$

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 23(a) 58 B1
 23(b)(i) 30 B1
 23(b)(ii) $\frac{64}{200}$ B1 oe 0.32 | | |

24	$5 y$	B1	$5 y-0,5 y+0$
	$4 y-1+$ their $5 y=5$	M1	$9 y-1=5$
	$\frac{2}{3}$	A1	oe $0.66,0.67, \frac{6}{9}$

$\mathbf{2 5}$	$6^{2}+9^{2}$	M1	
	$\sqrt{ } 117$	M1 dep	For squaring and adding then showing need to square root $\sqrt{ }(12+18)=\sqrt{ } 30$ is M0
	$3 \sqrt{ } 13$ or $10.8 \ldots$	A1	Accept 11 with working $\left(\min .6^{2}+9^{2}\right)$

26	$170 \div 20 \times 12$ or $170 \div 20 \times 8$	M1	
	Adam 102 and Brenda 68	A1	SC1 For both reversed

$\mathbf{2 7 (a) (i) ~}$	125	B1	1.25 m
$\mathbf{2 7 (a) (i i)}$	140.6	B1	
$\mathbf{2 7 (b)}$	Frequency polygon plotted at $(125,16),(135,38),(145,26)$ $(155,14),(165,6)$ or histogram	B2	Ignore any lines before 125 or after 165 -1 eeoo Any consistent misplotting is 1 error eg, upper class Plots but no lines is 1 error Accuracy of lines or plots $\frac{1}{4}$ sq. or 1 mm Histogram only SC1

[^0]: Set and published by the Assessment and Qualifications Alliance.

